Technical Information **Prothermo NMT532**

Intrinsically safe multi-signal converter with precision average temperature sensor for inventory control

Solutions

Application

Prothermo NMT532 consists of an intelligent local HART signal converter and average temperature sensor.

For average temperature measurement, it consists of precision multi-spot Pt100 (Max.6) elements which have fixed interval (2 m (6.57 ft) or 3 m (9.84 ft)).

NMT532 is a highly capable solution for a variety of tank gauging applications and provides constant average temperature data via local HART communication.

For customs bonding applications, it can provide accurate inventory management when used in conjunction with a tank gauge liquid surface meter such as Endress +Hauser's Proservo, Tank Side Monitor, or Micropilot radar.

Features

- High accuracy
- Intrinsically safe device allowing for the safest electrical configuration possible
- Compatible with FieldCare
- Simple and economical
- Compact size and weight
- High-reliability and easy installation
- Maintenance free

Table of contents

Symbol	3
Function and system design Measuring system Operation principle System design NMT532 Ex ia and NMS8x Exd [ia] combination NMT532 Ex ia and Micropilot FMR S-series combination	5 5 . 6 . 7
Input/output Measured variables Number of elements Communication Alarm signal Output signal Connection	9 9 9 9
Power supply Load local HART Overvoltage protection Power consumption Cable entry Supply voltage Process connection Grounding	10 10 10 10 10 10 10
Electrical connection Terminal connection NRF590 terminals Grounding	11 11 13 14
Performance characteristics	15 15 15 15 15
Installation . Position of NMT532 element No. 1 based on the installation method . Recommended installation height . Installation attachments . Recommended thermo well installation . Installation attachment 1: Anchor weight . Installation attachment 2: Wire hook + top anchor with thermo well . Mounting NMT532 on fixed roof tank .	16 16 17 18 19 19 20
Dimensions of NMT532 Weight Number of elements Temperature probe Flange Material	27 27 27 27 27 27 27

Environment	28
Ambient temperature	
Storage temperature	
	28
Protection class	28
Electromagnetic compatibility (EMC)	
Process temperature range	28
Process pressure limits	28
Data transmission	28
Stainless steel conversion table	28
Operability	3(
Operation using FieldCare	
Certificates and approvals	3]
CE mark	
RoHS	3
Approval	
External standards and guidelines	3
Order information	32
A acceptation	
Accessories	
Device-specific accessories	33
Documentation	36
Technical information	
Operating instructions (BA)	
Safety instructions (XA)	
Registered trademarks	37

About this document

Symbol Safety symbols

Symbol	Meaning				
⚠ DANGER	DANGER! This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury, as well as a risk of fire or explosion.				
WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in a risk of serious or fatal injury, fire or explosion.					
▲ CAUTION	Note This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in a risk of minor or moderate injury and damages to properties.				
NOTICE	NOTE! This symbol contains information on procedures and other facts that do not result in personal injury.				

Electrical symbols

Symbol	Meaning			
===	Direct current			
\sim	Alternating current			
$\overline{\sim}$	Direct current and alternating current			
<u></u>	Ground connection A grounded terminal that, as far as the operator is concerned, is grounded via a grounding system.			
	Protective ground connection A terminal that must be connected to the ground prior to establishing any other connections.			
4	Equipotential connection This connects with the grounding system at the plant. It includes equipotential line and single point ground systems, depending on the norms of each country or company.			

Tool symbols

Symbol	Meaning
0	Torx screwdriver
A0013442	
0	Flat blade screwdriver
A0011220	
06	Phillips screwdriver
A0011219	
06	Allen key
A0011221	
W.	Open-ended wrench
A0011222	

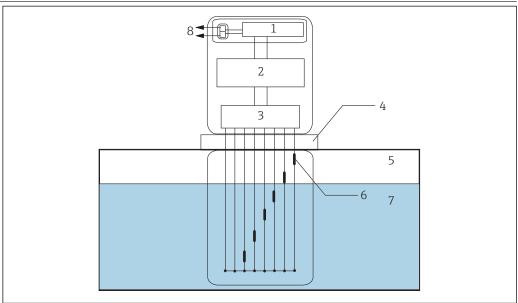
Symbols for certain types of information

Symbol	Meaning				
V	Permitted Procedures, processes or actions that are permitted				
✓ ✓	Preferred Procedures, processes or actions that are preferred				
X	Forbidden Procedures, processes or actions that are forbidden				
i	Tip Indicates additional information				
Ţ <u>ā</u>	Reference to documentation				
A	Reference to page				
	Reference to graphic				
>	Notice or individual step to be observed				
1., 2., 3	Series of steps				
L	Result of an operation or commissioning				
?	Help in the event of a problem				
	Visual inspection				
	Operation via the local display				
	Operation via operating tool				
	Write-protected parameter				

Symbols in graphics

Symbol	Meaning		
1, 2, 3	Item numbers		
1., 2., 3	Series of steps		
A, B, C,	phics		
A-A, B-B, C-C,	Cross-sections		
Hazardous area Indicates the hazardous area			
Safe area (non-hazardous area) Indicates the non-hazardous area			

Device symbol

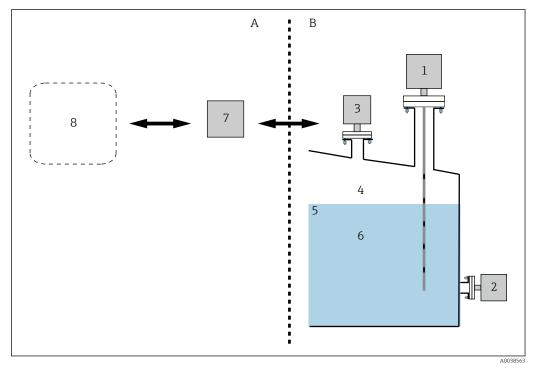

	Symbol	Meaning
	$\Lambda \rightarrow \square$	Safety instructions Observe the safety instructions contained in the associated Operating Instructions.
Temperature resistance of the connection cables Specifies the minimum value of the temperature resistance of the connection cables.		Temperature resistance of the connection cables Specifies the minimum value of the temperature resistance of the connection cables.

Function and system design

Measuring system

The NMT532 is compact and economical. The average temperature sensor consists of six Pt100 elements which have fixed interval of 2 m (6.57 ft) or 3 m (9.84 ft)) from the next sensor. Temperature data is transmitted to the NRF560, NRF81, NMS5, NMS8x, or NMR81x via an intrinsically safe (i.s.) 2-wire local HART signal.

Operation principle

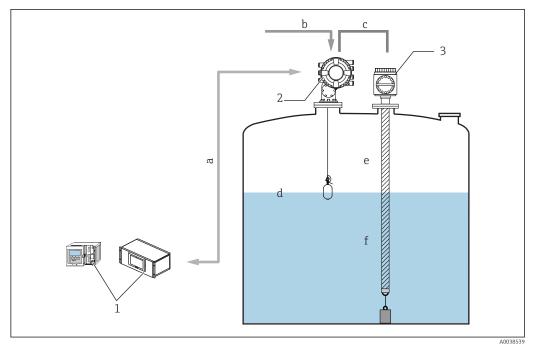

A003861

■ 1 Operation principle

- 1 Noise filter
- 2 Power supply module
- 3 CPU module
- 4 Flange
- 5 Gas phase
- 6 Pt100 Multi-spot element (up to 6 points)
- 7 Liquid phase
- 8 Local HART communication

System design

Endress+Hauser offers a wide range of solutions to utilize data of the sensor into the process management requirements. The diagrams above describe some individual solutions according to various example concepts. For additional application requirements, contact local Endress+Hauser representatives.



■ 2 System design

- A Data management
- B Field process
- 1 Average temperature
- 2 Pressure gauge
- 3 Level gauge
- 4 Gas temperature
- 5 Liquid level
- 6 Liquid temperature
- 7 System (system interface, Tankvision NXA82x/NXA83)
- 8 Host application (Tankvision NXA85/NXA86, DCS, PLC, others)

NMT532 Ex ia and NMS8x Exd [ia] combination

The connection of NMT532 shown below is only available for connection with NMS5 or NMS8x.

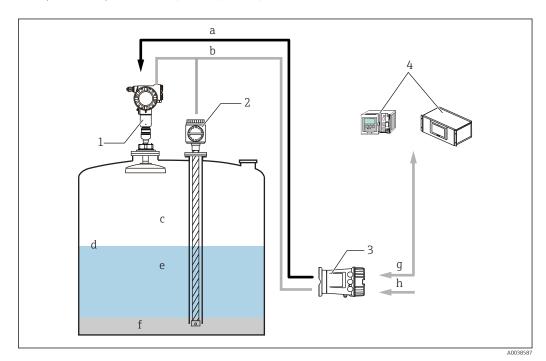
■ 3 NMS8x and NMS532 system design

- a Fieldbus protocol
- b Power supply
- c Local HART (Ex i) loop (data transmission)
- d Level
- e Gas temperature
- f Liquid temperature
- 1 Tankvision
- 2 NMS8x
- 3 NMT532

Typical application of NMT532 and NMS8x $\,$

NMT532 is used most effectively with NMS8x to provide average temperature, level, interface, and density measurement. All the necessary configuration and parameter settings for NMT532 are performed via either NMS5, NMS8x, or FieldCare. NMT532 receives liquid level data from NMS5 or NMS8x, then calculates liquid and gas phase average temperature. Calculated data and basic information including raw data for each temperature element and device status are transmitted to NMS5 or NMS8x.

i


All gathered data in the field interface unit are sent to inventory management software (Tankvision) or to NMS8x, NMS5x, NMS7, NMR8x, NRF8x or NRF590.

NMT532 Ex ia and Micropilot FMR S-series combination

Typical application of NMT532 converter + temperature probe

Temperature and level measurement with data collection and calculations via NRF81 allows for optimal inventory control. Basic functionality of NMT532 is displayed and configured on NRF81. Detailed NMT532 functionality and data access can be performed by FieldCare. NMT532 receives radar level data from NRF81 and then calculates liquid and gas phase average temperature. Calculated and standard data including temperature element raw data and device status are transmitted to NRF81.

All gathered data in the field interface unit are sent to inventory management software (Tankvision) or to NMS8x, NMS5x, NMS7, NMR8x, NRF8x or NRF590.

■ 4 NMT532 Ex ia and NRF590 Ex d [ia] combination

- a FMR power supply (DC/Ex i)
- b Local HART (Ex i) loop (data transmission)
- c Gas temperature
- d Level
- e Liquid level temperature
- f Water
- g Fieldbus protocol
- h Power supply
- 1 FMR540
- 2 NMT532
- 3 NRF81/NRF590
- 4 Tankvision

8

Input/output

Measured variables Liquid and gas temperature range Probe length 18.5 m (60.6 ft) or less

Number of elements

Number of elements	Maximum of six
--------------------	----------------

For the intervals of attaching elements, the distance of 2 m (6.57 ft) or 3 m (9.84 ft) must be required.

Communication

Local HART protocol (exclusively for local host device)

- Proservo NMS5/NMS7/NMS8x
- Micropilot NMR8x
- Tank side monitor NRF590/NRF81

Local HART

Local HART is Endress+Hauser's proprietary signal format that only uses local HART protocol digital transmission without a 4 to 20 mA signal. It is used for communications in NMT532, NRF560, NMS5, NMS7, NMS8x, NMR8x, NRF590, NRF81.

Alarm signal

Error information can be accessed via the following interface and transmission digital protocol. Refer to operating instructions for details on each device.

NMS5 BA00401G, MS7: BA01001G, NMS8x: BA1456G, BA1459G, BA1462			
NMR8x BA01450G, BA01453G			
NRF590 BA00256F, BA00257F, NRF81: BA01465G			

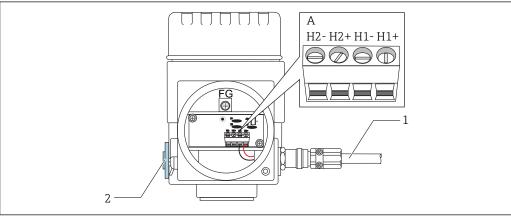
Output signal

Local HART protocol

Connection

- Proservo NMS5/NMS7/NMS8x
- Micropilot NMR8x
- Tank side monitor NRF590/NRF81

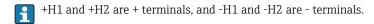
Power supply


Load local HART	Minimum loading for local HART circuit: 250 Ω				
Overvoltage protection	The NMT532 has an internal surge arrester that complies with EN/IEC 61000-4-5 (Line to Line 1.0 kV). Connect the metallic housing of the NMT532 to the tank wall directly with an electrically conductive lead to ensure reliable potential matching.				
Power consumption	6 mA				
Cable entry	Wiring of NMT532 must meet the flameproof and intrinsic safety requirements. The following cable entries are available:				
	■ Thread NPT1/2 ■ Thread M20				
Supply voltage	DC 16 to 30 V: Ex ia				
	Only for connection to a certified intrinsically safe circuit with the following maximum values				
	Ui = 30 V Ii = 120 mA Pi = 1 W	Internal capacitance Ci =	7.9 nF (ATEX, IECEx, NEPSI) 6.6 nF (FM C/US)		
		Internal inductance Li =	48 mH		
Process connection	Converter-only version				
	NMT532's local HART converter is compatible to other brands' average temperature sensors with the following mechanical connection sizes and types:				
	 NPS 2" Cl.150 RF, 304 flange ASME B16.5 DN50 PN10 B1, 304 flange EN1092-1 (DIN2527 C) 				
Grounding	The NMT532 must be grounded to the tank potential before connection to the host gauge. All ground connections must be compliant with local and company regulations, and checked before the equipment is commissioned.				

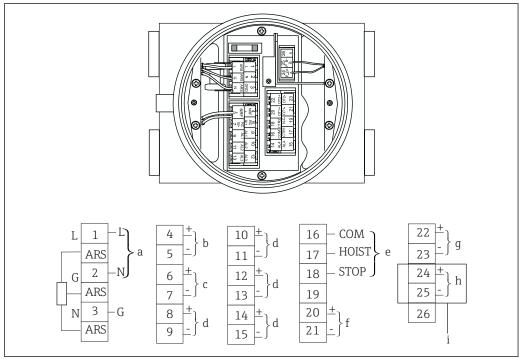
Electrical connection

Terminal connection

NMT532 (Ex ia) intrinsically safe connection


NMT532, which uses intrinsically safe local HART communication, must be connected to the device's intrinsically safe terminal to be connected. Refer to the intrinsic safety regulations for establishing wiring and field device layout.

- **№** 5 NMT532 terminal (ATEX • Ex ia)
- Temperature data / NMT532 intrinsically safe 2-wire HART communication (see Information) Α
- Shielded twisted pair wire or steel-armored wire
- Standard aluminum (die-cast plug)
- Only a metal cable gland may be used. The shielded wire on the HART communication line must be grounded.

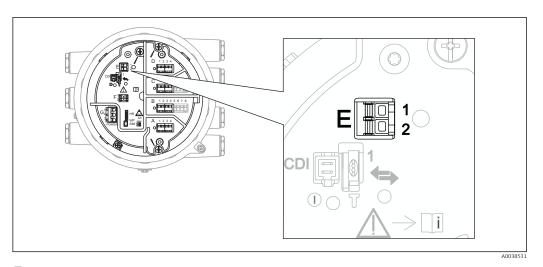

Connection table

Connection to NRF590		Connection to NMS5		Connection to NMS8x/NMR8x/NRF81	
+ Terminal	24, 26, 28	+ Terminal	24	+ Terminal	E1
- Terminal	25, 27, 29	- Terminal	25	- Terminal	E2

NMS5 (Ex d [ia]) intrinsically safe connection

The intrinsically safe NMT532 must be connected to the intrinsically safe local HART terminal on NMS5.

A00385

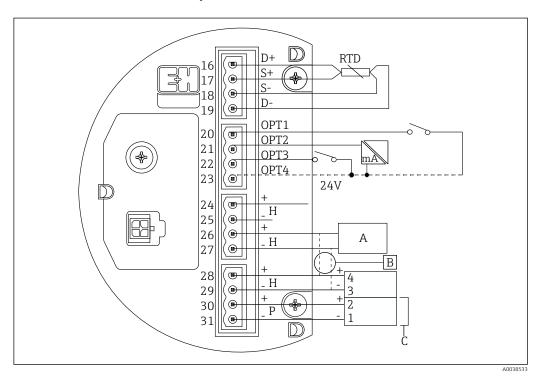

■ 6 NMS5 terminal

- a Power supply AC 85: 264 V50/60 Hz or DC20: 62 V AC20: 55 V
- b Non-intrinsically safe HART communication: NRF, etc.
- c Digital output Modbus, RS485 serial pulse or HART
- d Alarm contact point
- e Operation contact point input
- f 4 to 20 mA channel 1
- q 4 to 20 mA channel 2
- h Intrinsically safe HART
- i From NMT532 Ex ia

Do not connect NMT532 local HART communication cable to terminals 4 and 5 on NMS5/NMS7. These terminals are designed to connect to Ex d local HART communication.

NMS8x/NMR8x/NRF81 (Ex d [ia]) intrinsically safe connection

To connect an intrinsically safe NMT532, E1 and E2 are used to connect with NMS8x, NMR8x and NRF81.

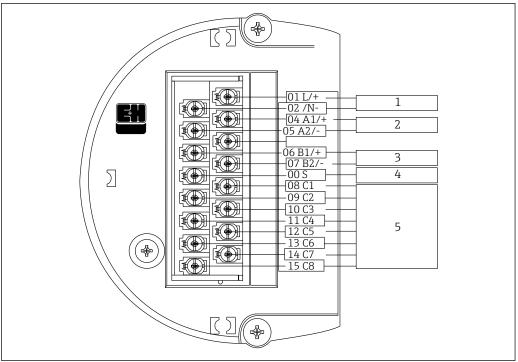

■ 7 NMS8x terminal for NMT532

E1 H+ terminal

E2 H- terminal

NRF590 terminals

NRF590 has three sets of intrinsically safe local HART terminals.

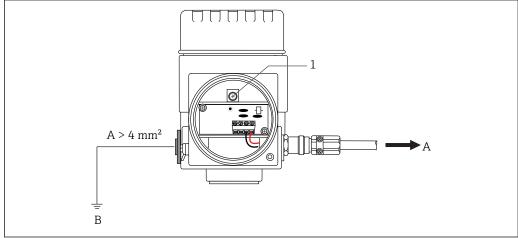

 \blacksquare 8 NRF590 (intrinsically safe) terminals

A A HART sensor (mutually connected as a single HART fieldbus loop on the inside)

B Fieldbus loop

C Only in Micropilot S series

A signal local HART line cannot be connected from NMT532 to terminals 30 and 31. These terminals are an intrinsically safe $24 V_{DC}$ power supply for the Micropilot S Series (FMR53x, FMR540).



9 NRF590 (TIIS flameproof) terminal

- Power supply 1
- Digital I/O A 2
- 3 Digital I/O B
- Cable shield 4
- Field protocol and analog I/O

Grounding

NMT532 must be grounded to the tank potential before communication and power connections are made. The connections from ground terminal of NMT532 to the tank ground must be made before any other wiring connections are made. All grounding must comply with local and company regulations and must be checked before the equipment is commissioned.

■ 10 Grounding

- To NRF590, NMS5, NMS8x, NMR8x, or NRF81 Α
- В Tank ground
- Ground terminal

Performance characteristics

Reference operating conditions

- Temperature: 25 °C (77 °F) ± 5 °C (9 °F)
- Pressure: 1013 mbar abs. \pm 20 mbar abs. (1013 hPa abs. \pm 20 hPa abs. , 14.7 psi abs. \pm 0.3 psi abs.)
- Relative humidity (air): 65 % ± 20 % (linearity)
- Converter and precision resistor combination or converter and probe combination

Measured value resolution

Temperature	≤ 0.1 °C (0.18 °F)
-------------	--------------------

Maximum measurement error

The values below represent performances under reference operating conditions (including linearity, repeatability, hysteresis).

Conversion accuracy

Function	Option	Accuracy
Temp.	Standard/ PTB	± 0.1 °C (0.18 °F)

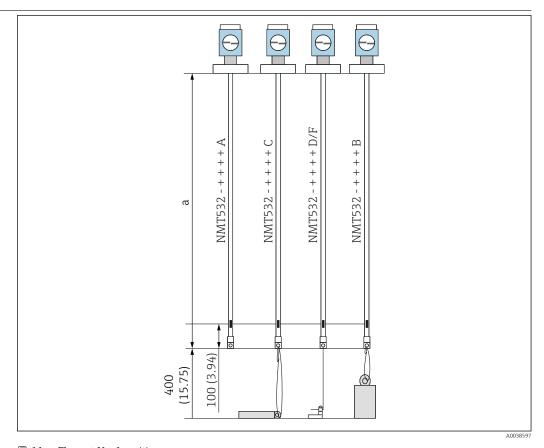
Probe accuracy

Function	Option	Accuracy
Temp.	Standard	± 0.15 °C + 0.002 °C x t (0.27 °F + 0.0036 °F t) IEC 60751 / DIN EN 60751 / JIS C1604 class A temperature element

Overall accuracy

Function	Option	Accuracy
Temp.	Standard	Conversion accuracy \pm 0.1 °C (0.18 °F) + environmental effect \pm 0.05 °C (0.09 °F) +
		Class A temperature element \pm 0.15 °C + 0.002 °C x t (0.27 °F + 0.0036 °F x t)

- Accuracy can be improved for each application by making adjustments on-site, such as adjusting the offset.
- |t| represents the temperature of the measured item.

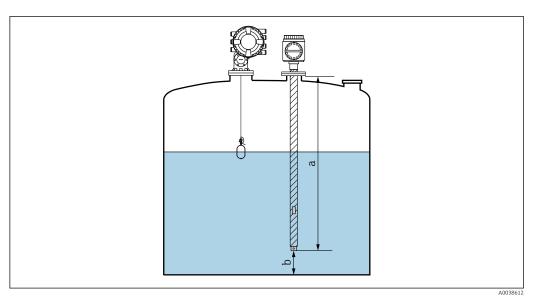

New module

NMT532 employs a completely new electronic module compared to the previous NMT535.

Items	NMT532	NMT535
CPU performance	16 bit	8 bit
Clock speed	2.7648 MHz	0.9216 MHz
Memory capacity (RAM)	20 KB	176 B
EEPROM	2 KB	256 B
Flash memory	256 KB	16 KB
Total # of print boards	4 (5: with capacitance board)	5
Power consumption (converter + temperature probe)	6 mA: 16 V _{DC} Ex [ia]	10 mA: 16 V _{DC}

Installation

Position of NMT532 element No. 1 based on the installation method



 \blacksquare 11 Element No. 1 position

Height below the flange to the end of the temperature probe for all types of NMT532

Recommended installation height

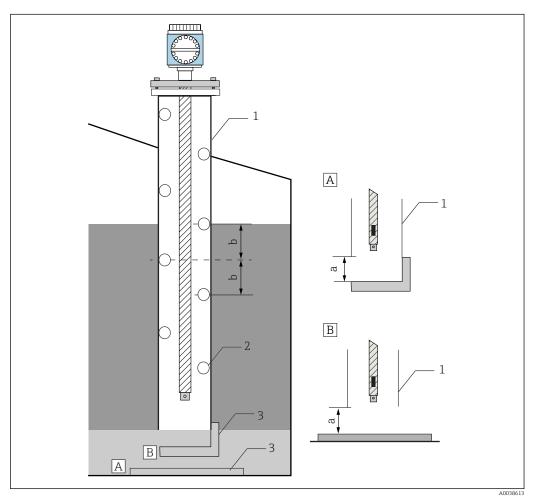
The required bottom clearance of both the temperature probe varies depending on the anchoring method. Consider the required bottom clearance when ordering NMT532. See the recommended bottom clearance in the above illustration and/or consult Endress+Hauser representatives for further information. The standard location of the lowest temperature element should be set at 500 mm (19.7 in) from the bottom of the tank regardless of probe type.

■ 12 Recommended installation

- a a Installation height
- b b Bottom clearance

- Installation height shows height below the flange to the end of the temperature probe.
 Recommended bottom clearance with mountain in the commended by the property of the commended by t
- Recommended bottom clearance with mounting attachment A, B, C, or D (refer to the next table) is 400 mm (15.57 in).

Installation attachments

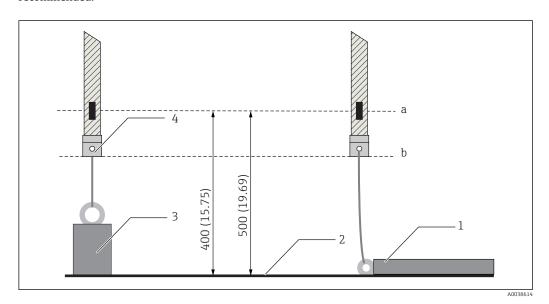

Contents of anchoring hardware: based on the selection of 100: mounting attachment.

020		A: installation attachments not selected	B: anchor weight (high profile, D120)	C: anchor weight (low profile, hexagon H41)	D: tension wire + wire hook + NPT1 top anchor	F: tension wire + wire hook + R1 top anchor
100	Converter + Temp. probe	Bottom hook	Bottom hook Anchor weight Sling wire	Bottom hook Anchor weight Sling wire	Bottom hook Base plate Wire hook NPT1 Top anchor Tension wire	Bottom hook Base plate Wire hook R1 top anchor Tension wire

Recommended thermo well installation

When installing a base plate at the bottom of a tank, A requires at least 300 mm (11.81 in) clearance from the bottom of a thermo well (perforated protective pipe).

If the anchor weight is not used when installing thermo well, the water should fill the tank up to the bottom from the end of the thermo well, enough to allow liquid to enter/exit the pipe.

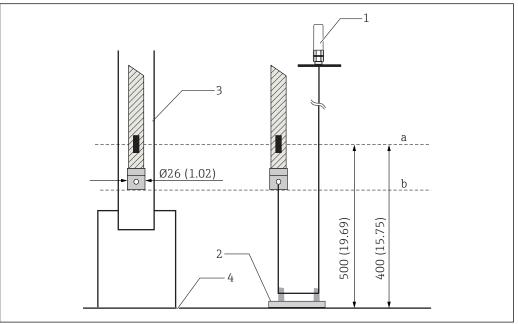

■ 13 Recommended thermo well

- A Base plate case 1
- B Base plate case 2
- a 300 mm (11.8 in) or more
- b 150 mm (5.91 in)
- 1 Thermo well
- 2 Hole (Ø 25 mm (0.98 in))
- 3 Base plate

Installation attachment 1: Anchor weight

The high-profile anchor weight is an anchoring method designed for the converter + temperature probe versions. The low-anchor weight is the an anchoring method designed for the small tank nozzle (max. 2 in (50A)).

For a temperature probe with anchor weight method, a clearance of $400\ mm$ (15.57 in) is recommended.

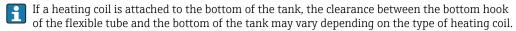


■ 14 Installation attachment 1: anchor weight

- a Element position #1 (bottom element)
- b Clearance from the tank floor
- 1 Weight for low profile
- 2 Tank floor
- 3 Weight for high profile
- 4 Bottom hook

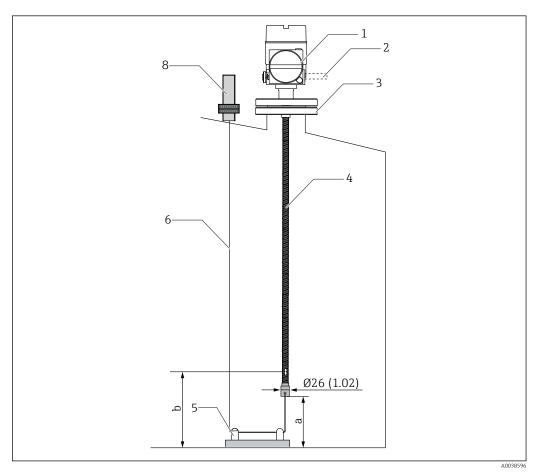
Installation attachment 2: Wire hook + top anchor with thermo well

For a temperature probe with wire hook and top anchor, and thermo well method, a clearance of $400\ \text{mm}$ (15.57 in) is recommended.



A003861

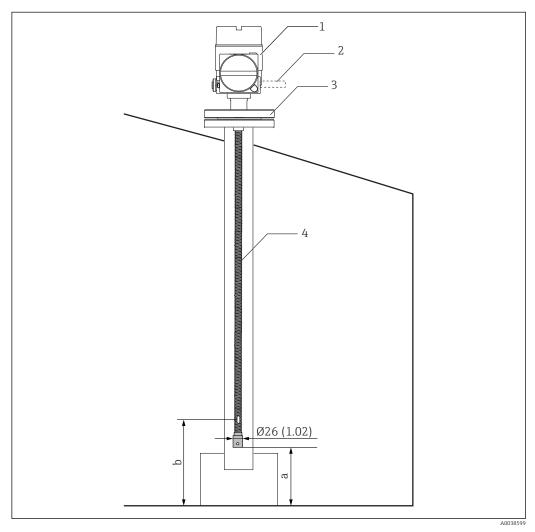
Mounting NMT532 on fixed roof tank


There are three ways to install NMT532 onto a fixed roof tank:

- Top anchor method
- Thermo well method
- Anchor weight method

Top anchor method

The flexible tube is fixed with a wire hook and a top anchor.

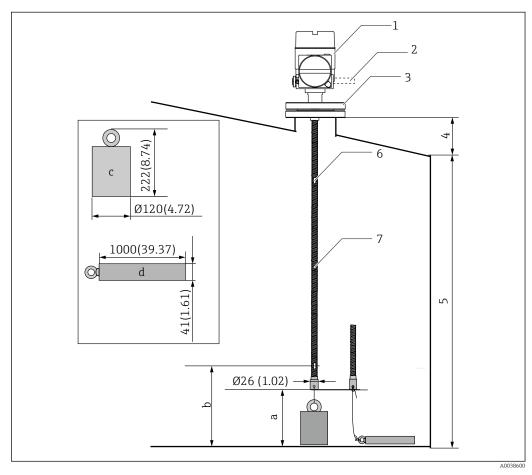

■ 15 Fixed roof tank. Unit of measurement mm (in)

- a 400 mm (15.57 in) (Clearance below bottom hook)
- *b* Approx.500 mm (20 in) (From the bottom of the tank to the temperature element position #1)
- 1 Electrical compartment
- 2 Cable entry as specified
- 3 Flange
- 4 Temperature probe
- 5 Wire hook
- 6 Tensioning wire
- 7 Top anchor

20

Thermo well method

The flexible tube is inserted into a thermo well with a diameter of 80.8 mm (2 in) or more.



■ 16 Thermo well. Unit of measurement mm (in)

- 1 Electrical compartment
- 2 Cable entry as specified
- 3 Flange
- 4 Temperature probe
- 5 400 mm (15.57 in) (Clearance below bottom hook)
- 6 Approx.500 mm (20 in) (From the bottom of the tank to the temperature element position #1)

Anchor weight method

The flexible tube is fixed with an anchor weight.

■ 17 Anchor weight

- a 400 mm (15.57 in) (Clearance below bottom of the hook to the bottom of the tank)
- b 500 mm (20 in) (From the bottom of the tank to the temperature element position #1)
- c Anchor weight for high profile
- d Anchor weight for low profile
- 1 Electrical compartment
- 2 Cable entry as specified
- 3 Flange
- 4 Nozzle height
- 5 Tank height
- 6 Upper temperature element
- 7 Flexible tube

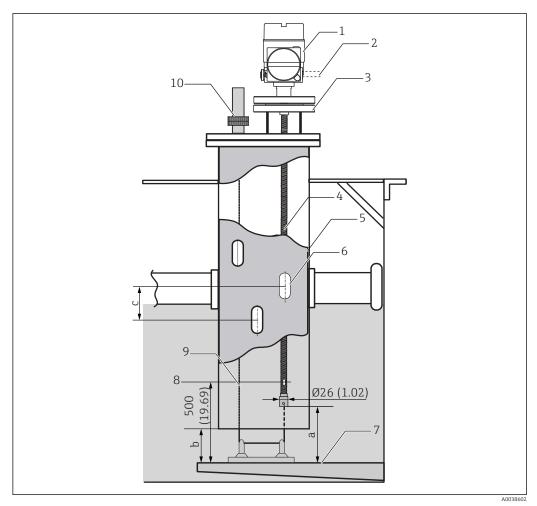
A CAUTION

Installation of an anchor weight

Using an anchor weight that is heavier than 16 kg may cause internal damages to the flexible tube.

- ► Ensure that the anchor weight is stable at the bottom of the tank. When installing NMT532 with a suspended anchor weight, use an anchor weight that weighs 16 kg or less.
- The flexible tube must be lowered carefully without overbending and scratching the inner edge of the nozzle hole.

Mounting on floating roof tank


There are three methods of mounting NMT532 on a floating roof tank as follows.

- Top anchor method
- Thermo well method
- Guide wire ring method

If a heating coil is attached to the bottom of the tank, the clearance between the bottom hook of the flexible tube and the bottom of the tank may vary depending on the type of heating coil.

Top anchor method

The flexible tube is installed in a fixed pipe and fixed with the top anchor. NMS5 or NMS8x and NMT532 can be mounted in the same fixed pipe.

■ 18 Floating roof tank. Unit of measurement mm (in)

- a 400 mm (15.57 in), Clearance of the bottom hook
- b 100 to 150 mm (3.94 to 5.91 in)
- c 500 to 1000 mm (19.69 to 39.37 in)

 ${\it Electrical\ compartment}$

Cable entry as specified

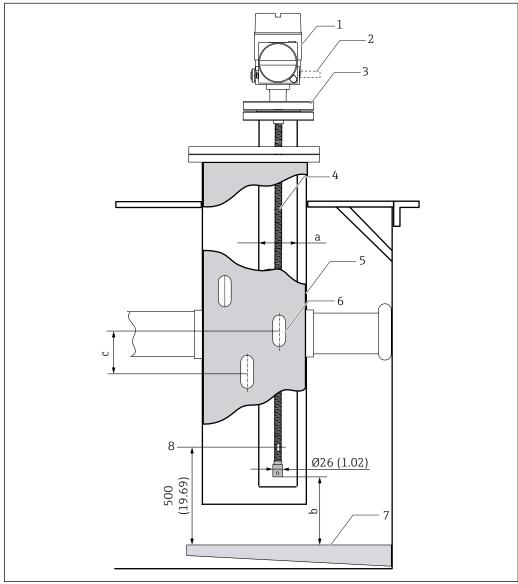
Flange

Temperature probe

Fixed pipe

Gas hole

Gauge plate

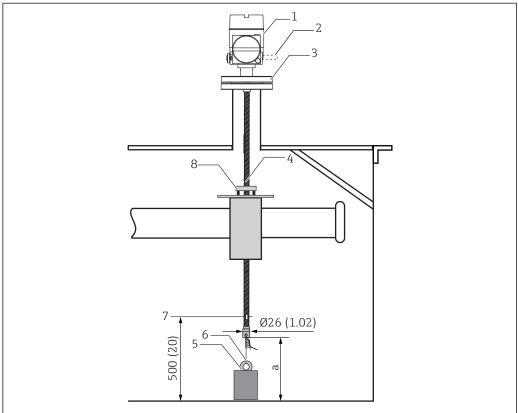

Temperature element position #1 (bottom temperature element)

Tensioning wire

 $Top\ anchor$

Thermo well method

The flexible tube is inserted into a thermo well in the fixed pipe.


A0038

■ 19 Thermo well method. Unit of measurement mm (in)

- a Stilling pipe, \emptyset 50.8 mm (2 in) or more, depending on specifications
- b 400 mm (15.57 in), Clearance of bottom hook
- c 500 to 1000 mm (19.69 to 39.37 in)
- 1 Electrical compartment
- 2 Cable entry as specified
- 3 Flange
- 4 Temperature probe
- 5 Fixed pipe
- 6 Gas hole
- 7 Gauge plate
- 8 Temperature element position #1 (bottom temperature element)

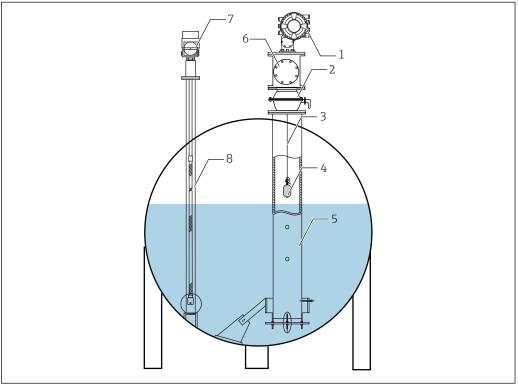
Guide ring and anchor weight method

The flexible tube is fixed with a guide ring and an anchor weight.

Guide ring and anchor weight. Unit of measurement mm (in)

- 400 mm (15.57 in), Clearance of bottom hook
- 500 to 1000 mm (19.69 to 39.37 in)
- Electrical compartment 1
- 2 Cable entry as specified
- 3 Flange
- 4 Temperature probe
- Anchor weight hook
- Tensioning wire
- *Temperature element position #1 (bottom temperature element)*
- Guide ring

A CAUTION

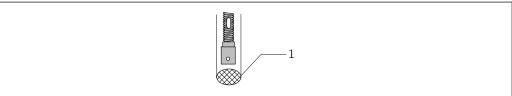

Installation of an anchor weight

Using an anchor weight that is heavier than 16 kg may cause internal damages to the flexible tube.

- Ensure that the anchor weight is stable at the bottom of the tank. When installing NMT532 with a suspended anchor weight, use an anchor weight that weighs 16 kg or less.
- The flexible tube must be lowered carefully without overbending and scratching the inner edge of the nozzle hole.

Mounting on pressurized tank

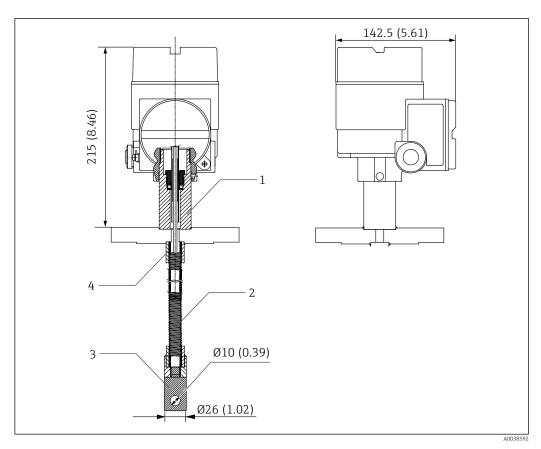
Pressurized tank is required to install a thermo well to protect the probe from the pressure.


A003860

■ 21 Thermo well for a pressurized tank

- 1 NMS8x / NMS5
- 2 Ball valve
- 3 Measuring wire
- 4 Displacer
- 5 Stilling well
- 6 Calibration / maintenance chamber
- 7 NMT532
- 8 Thermo well

- If the pressure inside a tank exceeds the atmospheric pressure (absolute pressure 1 bar, 100 kPa, 14.5 psi), install a thermo well (protective pipe) with no holes or slits onto NMT532. However, NMS8x requires a stilling well with holes and slits.
- NMT532 is installed in the thermo well (protective pipe) from the top of the tank nozzle.
- Cover the bottom of the thermo well for NMT532 and weld it to protect the probe from the pressure.



A003860

22 Thermo well welding

l Welding point

Dimensions of NMT532

■ 23 Dimensions of NMT532. Unit of measurement mm (in)

- SUS304
- Temperature probe (SUS316L) (see tips below.) Bottom hook (SUS316) 2
- SUS316
- The specifications of temperature probe vary depending on the tank height.

Weight	Approx. 8 kg
Number of elements	6 points
Temperature probe	11.5 m (37.72 ft)
Flange	NPS 2" Cl.150 RF, 304 flange ASME B16.5
Material	 Temperature measurement elements: Class A Pt100, IEC60751/DIN EN60751/JISC1604 Housing: Aluminum die cast Temperature probe: SUS316, SUS316L flexible tube (refer to "Dimension")

Environment

Ambient temperature	-40 to 85 °C (-40 to 185 °F)					
Storage temperature	-40 to 85 °C (−40 to 18	−40 to 85 °C (−40 to 185 °F)				
Climate class	DIN EN 60068-2-38 (te	DIN EN 60068-2-38 (test Z/AD)				
Protection class	IP65/68 NEMA4X/6P Housing with temperature probe					
Electromagnetic compatibility (EMC)	When installing the probes to metal or concrete tanks and when using a coax probe:					
	Emission	Conforms to EN 61326, electrical device class B				
	Immunity Conforms to EN 61326, Annex A (Industrial)					

Interference emission and immunity apply to each standard shown above when installing probes in metal and concrete tanks and when using coax probes.

Process temperature range

Temperature probe	−20 to 100 °C (−4 to 212 °F)
-------------------	------------------------------

Process pressure limits

Atmospheric pressure (absolute pressure 1 bar, 100 kPa, 14.5 psi)

- Pressurized tank: When using a tank that exceeds this process pressure, install a thermo well (protective pipe) with no holes or slits onto NMT532 to protect the probes from the pressure inside the tank.
- Static pressure: Because NMT532 has undergone an airtightness test at absolute pressure of 7 bar, it can withstand static pressure in the 50 ml range in petroleum/chemical product applications.

Data transmission	Minimum cable diameter	#24 AWG
Cable types		Twist pair with a shield

Stainless steel conversion table

The stainless steel material used in Endress + Hauser Yamanashi products uses expressions that conform to Japanese industrial standards such as JIS (Japanese Industrial Standard). Each country or region may have different expressions. The following conversion table shows the expression of equivalent stainless steel material based on chemical composition and mechanical properties.

Country	Standard	Expressions				
Japan	JIS/TIIS	SUS304	SUS304L	SUS316	SUS316L	
Germany	DIN 17006	X5 CrNi 18 10 X5 CrNi 18 12	X2 CrNi 18 11	X5 CrNiMo 17 12 2 / 1713 3	X2 CrNiMo 17 13 2	
	W.N. 17007	1.4301 1.4303	1.4306	1.4401 / 1.4436	1.4404	
France	AFNOR	Z 6 CN 18-09	Z 2CN 18-10	Z 6 CND 17-11 / 17 12	Z2 CND 17-12	
Italy	UNI	X5 CrNi 1810	X2 CrNi 1911	X5 CrNiMo 1712 / 1713	X2 CrNiMo 1712	
U.K.	BSI	304S15 / 304S16	304S11	316S31 / 316S33	316S11	
U.S.A.	AISI	304	304L	316	316L	
E.U.	EURONORM	X6 CrNi 1810	X3 CrNi 1810	X6 CrNiMo 17 12 2 / 17 13 3	X3 CrNiMo 17 12 2	
Spain	UNE	X6 CrNi 19-10	X2 CrNi 19-10	X6 CrNiMo 17-12-03	X2 CrNiMo 17-12-03	
Russia	GOST	08KH18N10 06KH18N11	03KH18N11	-	03KH17N14M2	

28

Country	Standard	Expressions				
-	ISO	11	10	20	19	
-	ASME	S30400	S30403	S31600	S31603	

The standards may not necessarily correspond exactly to JIS because they are defined by their respective mechanical and chemical criteria.

Operability

Operation using FieldCare

 $NMT532\ can\ be\ operated\ with\ Field Care.\ This\ program\ supports\ commissioning,\ securing\ of\ data,$ signal analysis and documentation of the instruments.

FieldCare supports the following functions:

- Online configuration of transmitters
- Loading and saving of instrument data (upload/download)Measurement position confirmation

Certificates and approvals

CE mark	By attaching the CE mark, Endress+Hauser confirms that the instruments have passed the required
	tests.

RoHS In compliance with RoHS directive 2011/65/EU (RoHS 2).

Approval

Approval	Class
ATEX	II 1/2 G Ex ia IIB T4-T6 Ga/Gb
IECEx	Ex ia IIB T4-T6 Ga/Gb
FM C/US	IS Cl. I, Div. 1, Gr. C, D, T6, T4 IS Cl. I, Zone 0, AEx ia IIB, T6, T4 NI Cl. I, Div. 2, Gr. C, D, T6, T4
NEPSI	Ex ia IIB T4-T6

External standards and guidelines

IEC 61326 Appendix: A, immunity according to table A-1

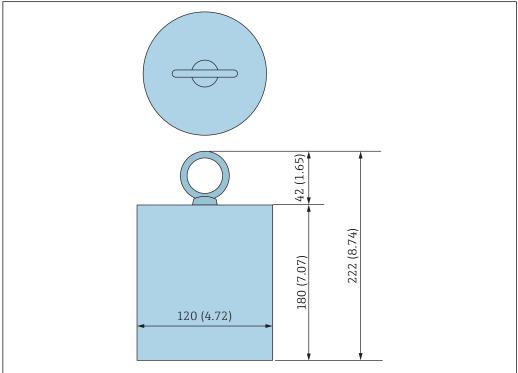
EN 60529	Protection class of housing (IP-code)
EN 61326	Emissions (equipment class B), compatibility (appendix A – industrial area) EN 61000-4-2 Immunity to electrostatic discharge

Order information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button to the right of the product image opens the Product Configurator.
- From your nearest Endress+Hauser sales organization: www.addresses.endress.com

Product Configurator - the tool for individual product configuration


- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

Accessories

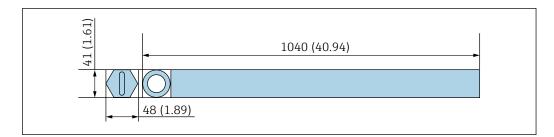
Device-specific accessories

Anchor weight (high profile)

This anchor weight was designed for the converter + temperature probe version. Even when an anchor weight is used for the installation, the bottom element (bottom point temperature measurement position) will be set at approx. 500 mm above the tank bottom. When installing a high-profile anchor weight from a nozzle at the top of the tank, ensure that the nozzle opening is at least 150A (6").

 \blacksquare 24 Installation attachment / Option B . Unit of measurement mm (in)

The anchor weight comes in different dimensions, weight and materials.

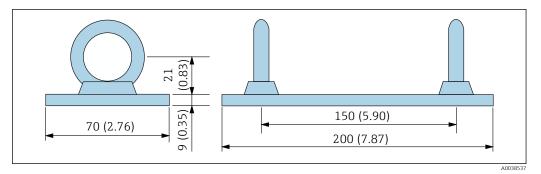

Description	Details
Weight	JIS SS400 mild carbon steel
Eye-bolt	JIS SS400 mild carbon steel
Mass	16 kg (35.3 lb)

Endress+Hauser 33

A003853

Anchor weight (low profile)

The low-profile anchor weight is mainly designed to secure a WB probe for measuring the WB measurement range accurately. It can also be used as an installation attachment for the converter + temperature probe version when trying to install a small tank nozzle (50A (2") or smaller) that is in use.

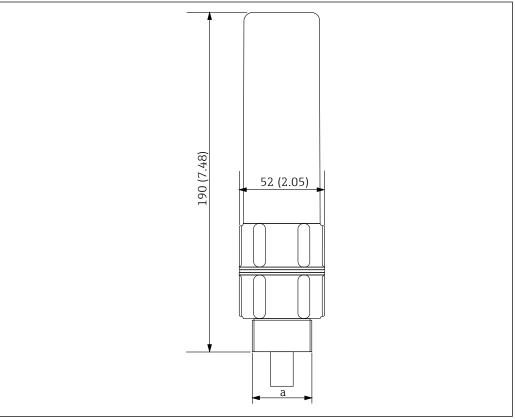


■ 25 Installation attachment / option C/G. Unit of measurement mm (in)

Description	Details
Weight	JIS SS400 mild carbon steel
Eye-bolt	JIS SS400 mild carbon steel
Mass	12 kg (26.46 lb)

Wire hook

Wire hooks come in a variety of wire types, sizes, materials, and special coatings to suit installations for a wide range of applications. The actual tension is created by the securing wire between the wire hook and the top anchor (SUS316, stranded wire with a diameter of 3 mm (0.12 in)).



Wire hook / option D/F. Unit of measurement mm (in)

Description	Details
Weight	JIS SS400 mild carbon steel
Eye-bolt	JIS SS400 mild carbon steel
Mass	1.5 kg (3.31 lb)

Top anchor

The standard threaded connection for a top anchor is an NPT1 or R1 threaded connection. It can accommodate different thread sizes, materials and special specifications. A joint flange is also possible.

A0038538

■ 27 Top anchor dimensions. Unit of measurement mm (in)

a R1 or NPT1 (specified by the order code)

Description	Details
Exterior	ADC (aluminum)
Interior	SUS316
Mass	1.2 kg (2.65 lb)

Documentation

For an overview of the scope of the enclosed associated technical documentation, refer to the following:

- The W@M device viewer: Enter the serial number from the nameplate (www.endress.com/deviceviewer).
- The *Endress+Hauser operations app*: Enter the serial number from the nameplate or scan the 2-D matrix code (QR code) on the nameplate.

Technical information

The technical information contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.

Instrument	Technical information
Prothermo NMT532	TI000049G
Proservo NMS5	TI00452G
Proservo NMS8x	TI01248G / TI01249G / TI01250G
Micropilot NMR8x	TI01252G / TI01253G
Promonitor NRF560	TI00462G
Promonitor NRF81	TI01251G

Operating instructions (BA)

The operating instructions contain all the information that is required during various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning, through to troubleshooting, maintenance and disposal.

They also contain detailed information on the parameters in the operation menu. The description is aimed at those who work with the device over its entire life cycle and perform specific configurations.

Instrument	Operating instructions	
Prothermo NMT532	BA01032G	

Safety instructions (XA)

Feature 010 ("Approval")	Meaning	Ex / XA
В	ATEX Ex ia IIB T4-T6	XA00584G
F	IEC Ex ia IIB T4-T6	XA00581G
G	NEPSI Ex ia IIB T4-T6	XA01260G
M	INMETRO Ex ia IIB T4-T6	XA00581G
7	FM C/US IS Ci. I Div.1 Gr. C-D	Ex461-852-1

Registered trademarks

 $\label{eq:FieldCare} \textbf{FieldCare}^{\$}$ Registered trademark of the Endress+Hauser Process Solutions AG, Reinach, Switzerland.

Registered trademark of the FieldComm Group, Austin, USA.

中国E+H技术销售 www.ainstru.com

电话: 18923830905 邮箱: sales@ainstru.com

